C 221 RB

Vanne de régulation

Altimétrique à pilote et maintien amont en remplissage par le bas

Fiche Technique

Description

La vanne de régulation C 221 RB prévient le débordement et maintient constant le niveau d'un réservoir au moyen d'un pilote en garantissant un minimum de pression à l'amont. La ré-ouverture de la vanne s'effectue à environ 30 cm en-dessous du niveau haut. Équipée de clapets de non retour, elle se ferme automatiquement en cas de retour d'eau (C221C - nous consulter).

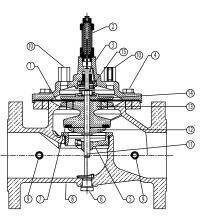
C 221 RB

Vanne de régulation altimétrique à pilote et maintien amont en remplissage par le bas.

DN		. PN	PFA	PS				Cat	Réf.	Poids*	
"	mm		en bar	L1	L2	G1	G2	Oat	nei.	Kg	
1 1/2		10/16/25	10	10	10	Χ	Χ	4.3	-	8	
	40	10/16/25	10	10	10	Х	Х	4.3	-	12	
	50	10/16/25	10	10	10	Х	Х	4.3	149B002652	13	
	65	10/16/25	10	10	10	Х	Х	4.3	149B22106N	21	
	80	10/16/25	10	10	10	Х	Х	4.3	149B22108N	26	
	100	10/16	10	10	10	Х	Х	4.3	149B22110N	39	
	125	10/16	10	10	10	Х	Х	4.3	-	59	
	150	10/16	10	10	10	Х	Х	4.3	149B22112N	73	
	200	10	10	10	10	Х	Х	4.3	149B22114N	122	
	250	10	10	10	10	Х	Х	1	149B22115N	208	
	300	10	10	10	10	Х	Х	1	149B22116N	328	

^{*} Poids de la vanne seule

Important:


Les indications de température et de pression données pour les différentes catégories de fluides (L1/L2/G1/G2) ne constituent en aucun cas une garantie d'utilisation. Il est donc indispensable de valider l'utilisation des produits en fonction des conditions de service auprès de notre service préconisation. De plus, les notices d'instructions de service sont disponibles sur notre site Internet www.socla.com ou sur simple demande auprès de notre service commercial.

Caractéristiques techniques						
Température d'utilisation	-10 °C à 90 °C					
Pression amont	Mini.: 1 bar / Maxi.: 25 bar (voir tableau ci-dessus)					
Raccordement	DN 40 À 300 mm : à brides PN (voir tableau ci-dessus) DN 1"1/2 : taraudé F/F					
Fluides admis	Eau claire dégrillée à 2 mm					
Montage vertical	En option					

Nomenclature et matériaux

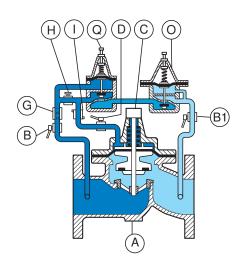
N°	Désignation	Matériaux	EURO	ANSI
1	Membrane	EPDM/Polyamide		
2	Indicateur de position avec purge	Laiton et Inox	EN 12164-CuZn39Pb3-R360min EN 10088-3-X5CrNi18-10 EPDM Cu	ASTM B36 / ASTM B121 AISI 304 / ASTM A240
3	Chapeau haute pression	Fonte/Epoxy Int/Ext	EN 1563 EN-GJS-400-15 sauf DN 125: EN 1561-EN-GJL-300	ASTM A536 60-40-18 ASTM A48 class 45B
4	Boulonnerie et visserie	Acier inox	EN 10088-3-X5CrNi18-10	AISI 304 / ASTM A240
5	Siège démontable	Acier inox	EN 10213-GX5CrNi19-10+AT	AISI 304 / ASTM A240
6	Bouchon de purge et de vanne	Laiton	EN 12164-CuZn39Pb3-R360min	ASTM B36 / ASTM B121
7	Joint étancheite reversible	EPDM		
8	Corps haute pression	Fonte/Epoxy Int/Ext 150µ ± 50µ	EN 1563 EN-GJS-400-15 sauf DN 125 : EN 1561-EN-GJL-300	ASTM A536 60-40-18 ASTM A48 class 45B
9-10	Vanne	Laiton chromé		
11	Axe	Acier Inox	EN10213-GX5CrNi19-10-AT	AISI 304 / ASTM A240
12	Flasque	Acier Inox	EN10088-3X5CrNI18-10	AISI 304 / ASTM A240
13	Porte joint	Bronze (DN40-50) Fonte/Epoxy	EN1982 CuSn5Zn5Pb2-C GS EN1561-EN-GJL-250	ASTM A 48 35 B
14	Plaque	Bronze (DN40-50) Fonte/Epoxy	EN1982 CuSn5Zn5Pb2-C GS EN1561-EN-GJL-250	ASTM A 48 35 B
15	Ressort	Acier Inox	EN10270-3 X10CrNi18-8	AISI 302

vanne de débit standard

Agréments

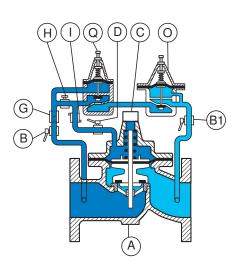
ACS (€ PED 2014/68/UE

Normes / Réglementation :


Conformité CE directive 2014/68/UE Raccordement à brides PN suivant EN 1092-2

Application

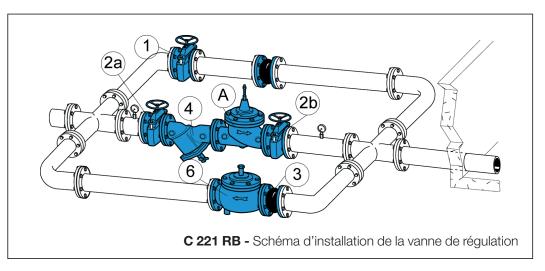
La vanne de régulation C 221 RB doit être utilisé lorsque la pression d'alimentation est nettement supérieure (1 bar) à la charge du réservoir plein.


Fonctionnement

Remplissage du réservoir par le bas :

Pas de prise de pression du pilote au réservoir.

Dès que le niveau du réservoir baisse et si la pression amont est suffisante, le pilote Q est ouvert et le pilote Q commence à s'ouvrir. La chambre supérieure se vide partiellement, la vanne A s'ouvre.


Remplissage du réservoir par le bas :

Pas de prise de pression du pilote au réservoir.

Dès que le niveau est maximum et si la pression amont est suffisante, le pilote Q est ouvert et le pilote O se ferme.

La pression amont s'installe au-dessus de la membrane de la vanne $\widehat{(A)}$ qui se ferme.

Installation

N°	Désignation
Α	Corps principal
В	Vanne d'isolement amont
B1	Vanne d'isolement aval
С	Indicateur visuel de purge
D	Vanne d'isolement de la chambre
G	Filtre
Н	Ajutage ou vanne pointeau
	Régulateur de débit
0	Pilote C201
Q	Pilote C301
1	Vanne d'isolement du by-pass
2a	Vanne d'isolement amont de la canalisation principale
2b	Vanne d'isolement aval de la canalisation principale
3	Manchon anti-vibratoire
4	Filtre
6	Clapet de non retour du by-pass

Plages de réglage des pilotes :

Pilote amont:

- 1 à 2,41 bar
- 1,72 à 8,6 bar (standard)
- 6,89 à 17,24 bar
- 13,78 à 25 bar

Pilote altimétrique :

- 1,5 à 13 m
- 13 à 27 m (standard)
- 20 à 55 m

Précautions d'installation :

- Monter un filtre à l'amont
- Montage horizontal : chapeau dirigé vers le haut, celui-ci étant incliné de 45° maximum
- Montage vertical: changer le ressort de la vanne de base (option 7)

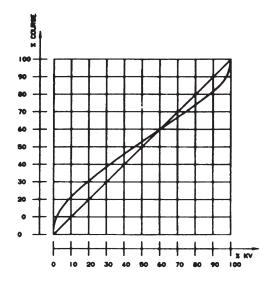
Exécutions possibles:

• C221S, C201, C201C, C201DS, C201S, C201M

Maintenance

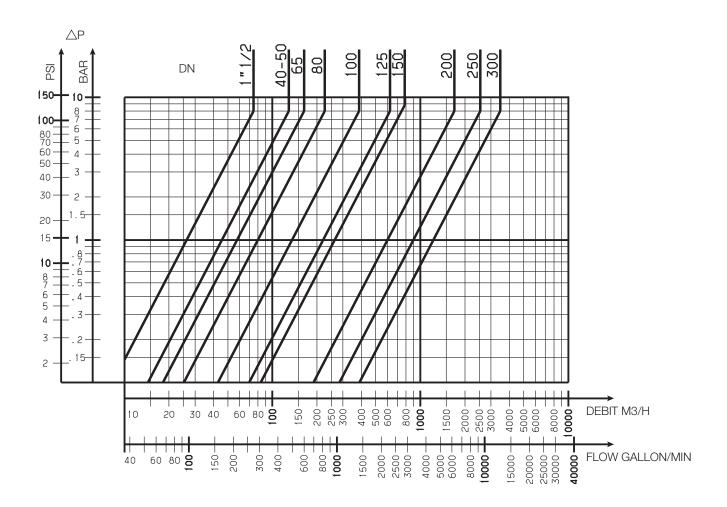
Contrôle périodique tous les 6 à 12 mois suivant la qualité de l'eau et des pressions :

- Purge de la chambre de commande
- Essai à grand débit
- Vérification et nettoyage des filtres (circuit de pilotage et canalisation principale)
- Vérification du fonctionnement (pressions)

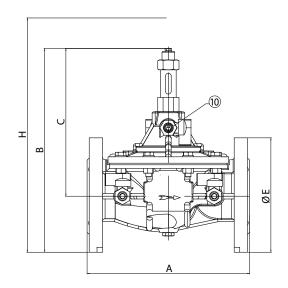

Maintenance générale tous les cinq ans suivant la qualité de l'eau et des pressions :

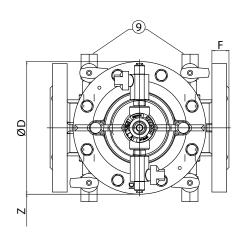
- Démontage
- Nettoyage de la vanne de base et du pilote
- Changement préventif des joints (kits disponibles sur demande)
- Remontage et essais

Caractéristiques de fonctionnement


Choix de la vanne de base

DN	Mini	Maxi	KV		ζ	PN	PFA
mm	m³/h	m³/h	m³/h	L/s	,	bar	bar
1" 1/2	0,520	20,34	26,35	7,32	5,78	10/16/25	10
40	0,675	32,00	45,66	12,68	1,93	10/16/25	10
50	0,675	32,00	45,66	12,68	4,70	10/16/25	10
65	0,855	54,00	57,75	16,08	8,39	10/16/25	10
80	1,600	82,00	80,00	22,22	10,00	10/16/25	10
100	2,720	127,00	136,00	37,78	8,47	10/16	10
125	4,400	199,00	220,00	61,11	7,90	10/16	10
150	5,280	286,00	264,00	73,33	11,38	10/16	10
200	13,500	509,00	600,00	66,67	6,96	10	10
250	25,000	795,00	900,00	50,00	7,56	10	10
300	40,900	1145,00	1224,00 40,00		8,47	10	10


Abaque des pertes de charge


Courbe continue : vanne de base totalement ouverte

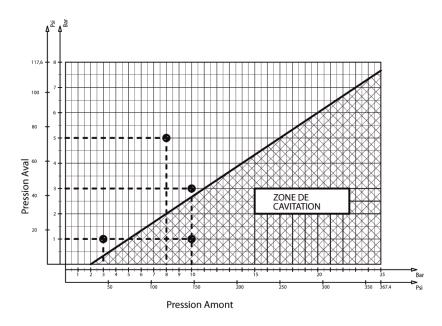
Encombrements

vanne de débit standard

DN	Α	В	С	Ø D	ØE	F	Н	z	9	10
"	mm	mm	mm	mm	mm	mm	mm	mm	"	"
1 1/2(F/F)	230	267	210	170	6 pans ⁽¹⁾	-	400	254	1/4	3/8
40	230	285	210	170	152	23	400	254	1/4	3/8
50	230	285	210	170	161	23	400	254	1/4	3/8
65	290	352	257	200	185	24	470	254	3/8	1/4
80	310	372	272	217	200	26	500	254	3/8	3/8
100	350	423	302	241	235	28	510	254	3/8	3/8
125	400	506	371	296	270	30	570	254	3/8	3/8
150	480	551	401	363	300	20	650	254	3/8	3/8
200	600	709	529	467	360	22	750	254	3/8	3/8
250	730	844	631	587	425	24	900	254	1/2	1/2
300	850	975	730	680	486	27	1100	254	1/2	1/2

(1) 78/plats

7


Autre information technique

Cavitation

Une pression différentielle trop importante et une pression aval trop basse peuvent avoir pour effet une détérioration de la vanne par cavitation.

Pour l'éviter, se référer à la courbe de cavitation, et si nécessaire, réduire la différentielle de pression en effectuant plusieurs paliers par l'installation de plusieurs vannes de régulation en série (nous consulter).

Montage du siège + contre siège acier inox en standard.

Les descriptions, photographies et illustrations contenues dans cette fiche technique sont fournies seulement à titre informatif et ne sont pas contractuelles. Socla se réserve le droit d'apporter toute modification technique ou esthétique à ses produits sans aucun avertissement préalable. Garantie : toutes les ventes ou contrats de vente sont expressément conditionnés à l'acceptation par l'acheteur des conditions générales de vente Socla figurant sur notre site internet. Socla s'oppose ainsi à toute autre modalité, différente ou additionnelle des modalités Socla, quel que soit le support de communication de l'acheteur dans laquelle elle est contenue ainsi que sa forme, à moins d'un accord écrit spécifique signé par un dirigeant de Socla.

Socla sas

© 2019 Socla